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Abstract. Squeezed spin states are defined through canonical transformations analogous to the
squeezed states for boson systems and variances of spin components are obtained. The defined
concept of squeezed spin states has been applied to Heisenberg interaction for the spin system with
S = 1.

1. Introduction

Squeezed states, which play an important role in quantum optics [1] and in condensed matter
physics [2] are now also considered for spin systems [3, 4]. These states are nonclassical in
the sense that uncertainty in one variance is compressed at the expense of the complementary
variance of two noncommuting operators, while keeping their product at a minimum value as
predicted for coherent states [5]. In the case of spin components, theSU(1, 1) andSU(2)
coherent states were first introduced by Barut and Girardello [6] and Radcliffe [7], respectively,
and coherent states have been generalized for an arbitrary Lie group by Perelomov [8]. In this
study, we consider only the squeezed states related to theSU(2) coherent states. The spin
or angular momentum systemES = (Sx, Sy, Sz) obeys the well known commutation relation
[Si, Sj ] = i ∈ijk Sk where i, j, k refer to the components of any orthogonal basis. The
associated uncertainty relation is

1Si1Sj > 1
2|〈Sk〉| (1)

where the right-hand side is state dependent. The equality in (1) is satisfied when both sides
have local minima and these states are called minimum-uncertainty states (MUS). All other
states leading to an equality but without any local minimum are called intelligent states [9]. In
a recent paper by Trifonov [10], a more restrictive definition has been given, in which variances
of two components normal to the mean spin direction are equal. This is achieved when the
state is an eigenstate of one of the operators,S± = Sx ± iSy . If one of the variances is now
reduced below its value in the MUS at the expense of the other, one obtains squeezed spin
states (SSS). According to the definition of Wodkiewicz and Eberly [3] this can be expressed
as(1Si)2 6 1

2|〈Sz〉| for i = x or y. In the case of the Trifonov definition, the variances given
by (1Sx)2 = (1Sy)2 = S

2 in the MUS now become(1Si)2 6 S
2 for i = x or y in the SSS,

where S is the total spin of the system: here the two states|S,±S〉 are the only spin MUS
with equal variances. While these are widely accepted as two different definitions for spin
squeezing, there are alternative ways to construct such states. In one approach spins can be
squeezed by rotating the coherent spin states (CSS) [4]; in the other it can be accomplished by
usingS± to form the operatorJ (u, v) = uS− + vS+ such thatJ (u, v)|u, v, s〉 = 0 [10].
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In this work we attempt to construct the SSS starting from theSU(2) coherent states and by
using a canonical transformation, which in fact lies between these two approaches. In section 2
we introduce the canonical transformation to form the SSS and calculate the uncertainties of
spin components. As a nontrivial application of this model, in section 3 we consider a simple
spin system with two elementary1

2 spin interacting via the anisotropic Heisenberg Hamiltonian,
whose exact solution is known.

2. Squeezed spin states

The CSS are defined through the relation involving the lowering operatorS− for spins

|µ〉 = (1 + |µ|2)−SeµS−|S, S〉 (2)

where|S, S〉 is a normalized fiducial state, and for convenience it can be chosen to be an
eigenvector ofSz. It is also convenient to parametrize the coherent states byµ = tan θ

2eiφ,where
06 θ 6 π and 06 φ < 2π .

The S spin coherent states|θ, φ〉 is equivalent to a set of 2S elementary1
2 spins all

pointing in the same direction (θ, φ) [4]. In our calculations we only consider two elementary
spin system, i.e.S = 1. Thus (2) can be written as

|θ, φ〉 =
[
|11〉 + eiφ tan

θ

2

√
2|10〉 + e2iφ

(
tan

θ

2

)2

|1− 1〉
]/(

1 + tan2 θ

2

)
(3)

whereθ andφ can either take special values to form the initial state|π2 , 0〉 as in [4] or can be
chosen as parameters to establish stable states for a pair in two- and three-dimensional lattices
as in [11]. We take them as variational parameters in the energy calculation of the next section.

In order to define SSS we introduce a unitary operator

U = eT with T = αS2
+ − α∗S2

− (4)

and transform Si component of the spin in a commutator expansion of the form

U−1SiU = Si + 1
1! [T , Si ] + 1

2! [T , [T , Si ]] + · · · . (5)

Here each term in the expansion is proportional to powers ofα andα∗. Contrary to boson
squeezing, this expansion cannot be summed in a closed form due to the commutation relations
betweenSi andSj . However, it is sufficient to take a few terms in the expansion, since|α| < 1,
as will be seen below. We therefore consider three terms up to the second power ofα andα∗

in (5) for the calculation of variances ofSx, Sy, Sz as an approximation. In this approach, the
expectation values of̃Si spin components after squeezed states transformation can be easily
calculated by making use of equation (3):

〈θ, φ|S̃x |θ, φ〉 = cosφ sinθ − r sin 2θ cos(β + φ)− 2r2 cosφ sinθ
〈θ, φ|S̃y |θ, φ〉 = sinφ sinθ + r sin 2θ sin(β + φ) + 2r2 sinφ sinθ
〈θ, φ|S̃z|θ, φ〉 = cosθ + 2r sin2 θ cos(β + 2φ)− 8r2 cosθ

(6)

whereα = reiβ is used. In the same coherent states the expectation values ofS̃2
i are

〈θ, φ|S̃2
x(y)|θ, φ〉 = sin2 θ{+(−) 1

4 cos 2φ + 1
2 − (+)r2 cos(2β + 2φ)− (+)r2 cos 2φ}

+1
4(1 + cos2 θ)− (+)2r cosθ cosβ. (7)

Hence we obtain the variances

(1S̃x,y)
2 = 〈S̃2

x,y〉 − 〈S̃x,y〉2. (8)
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Figure 1. The plot of 1
2 |〈S̃z〉| versusr andθ for 2φ + β = π and arbitraryβ.

It should be noted that when the squeezing effect is removed, i.e.α = 0, the uncertainties
become

1S2
x = 1

2(1− sin2 θ cos2 φ)

1S2
y = 1

2(1− sin2 θ sin2 φ).

For the CSS, the equality in (1) holds either forθ = 0 and arbitraryφ or arbitraryθ andφ = nπ2
(n is an integer). In addition, a local minimum of both sides of (1) is satisfied forθ = π

2 and
φ = nπ2 , and these four cases are considered the only MUS for the CSS [3]. However, these
do not qualify as MUS according to the definition of Trifonov.

In the case of squeezed variances, if we minimize|〈S̃z〉| with respect to the parameters
θ, φ, r andβ then we obtainβ + 2φ = nπ ; r = ∓( 1

12 tan6 θ
2 − 1

4 tan2 θ
2 − 1

6); and four real
values forθ : tan θ

2 = ±1.5155 and±0.659 86—where +(−) in r refers to even(odd)n. If we
consider oddn, then we obtain two minima located at the pointsθ = 0.37π , r = −0.27 and
θ = 0.63π , r = 0.27, as can be easily seen in figure 1. It is difficult to obtain the extreme
points of the uncertainty products, i.e. the LHS of (1). We therefore plot it as functions of
r andθ , where only one minimal value(θ = 0.63π , r = 0.27) occurs at the same point as
the RHS of (1), as seen in figure 2—whereβ is taken to be 0.35π , for which the equality in
(1) is satisfied. With these values, the variances become(1S̃x)

2 = 0.67, (1S̃y)2 = 0.13 and
1
2|〈S̃z〉| = 0.3. Thus we see that both definitions for squeezing are satisfied.

It should be noted that the local minimum of the uncertainties product changes very slowly
as the value ofβ is changed. For evenn we obtain the same values for the local minima.

In this paper the SSS are defined through canonical transformations, which are constructed
by analogy with the squeezed states of boson systems. For bosonic squeezing such a
transformation results from parametric interaction with a strong classical pump. The simplest
nonlinear interaction Hamiltonian with quadratic terms of the annihilation (a) and creation
(a+) boson operators and with interaction parameterχ

HI = h̄(χa2 + χ∗a+2
) (9)
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Figure 2. The plot of the uncertainties product1S̃x1S̃y versusr andθ for 2φ +β = πβ = 0.35π .

gives a unitary transformationU = exp(itHI /h̄), from which the squeezed states of light
evolve either from the coherent states or equivalently the vacuum state. It also determines
the general form of the well known unitary transformation that diagonalizes any Hamiltonian
containing quadratic terms [12].

In the case of SSS, equation (4) is not arbitrary: the choice is similar to the multiatom
squeezed states as defined by Barnettet al [13], containing correlated pairs of two-level atoms.
Further to this implementation, one can consider the realization introduced by Kitagawa
et al [4], where the concept of spin squeezing is established in terms of one- and two-axis
twisting mechanisms. In particular, the two-axis twisting Hamiltonian gives the same canonical
transformation as equation (4) with realα, i.e.

H = h̄χ

2i
(S+

2 − S2
−). (10)

Therefore, we can implement our canonical transformation in terms of two-state systems, as
discussed in detail by Kitagawa and Ueda [4]. These might be interferometers employing
active elements such as four-wave mixers in their construction [14], where the interaction
Hamiltonian equation (10) corresponds to coherent transfer of two particles at the same time.

3. Heisenberg interaction

We now consider two spin12 particles interacting via the anisotropic Heisenberg Hamiltonian

H12 = −[J‖S1zS2z + J⊥(S1xS2x + S1yS2y)] (11)

where J‖ and J⊥are exchange interactions, along the direction of the mean spin and
perpendicular to it, respectively.

It is convenient to express equation (11) in terms of the total spinES = ES1 + ES2, which
results in

H = − 1
2[(S2

z − 1
2)(J‖ − J⊥) + J⊥(S2 − 3

2)]. (12)
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In a recent paper [11], the exact ground-state spin configurations for two- and three-
dimensional lattices were calculated by using this Hamiltonian with similar coherent spin
states: whereθ andφ are considered arbitrary parameters to construct all possible structures.
In our calculation we considerθ andφ as variational parameters to obtain the optimal ground
state.

We now transform the Hamiltonian (12) by the unitary operatorU to obtain squeezed spin
effects such as

H̃ = U−1HU (13)

using equation (4) and the terms up to the third power ofα andα∗. If we take the expectation
value of this transformed Hamiltonian between the CSS|θ, φ〉, we then obtain a functional
that depends on the parametersα, α∗, θ andφ

〈θ, φ|H̃ |θ, φ〉 = 1

4
(J‖ − J⊥) sin2 θ − J‖ 1

4
− 2|α|2 sin4 θ

2
(J‖ − J⊥)

+2
3 sin2 θ(J‖ − J⊥)|α|2(αe2iφ + α∗e−2iφ). (14)

By minimizing the last expression with respect to these parameters, we obtain four equations
to solve. But upon choosingα = reiβ for convenience, as before, theφ derivation gives
sin(2φ + β) = 0 and hence 2φ + β = nπ . The other derivations result in

16

3
αe2iφ +

8

3
α∗e−2iφ − 2 tan2 θ

2
= 0 (15)

1− 4|α|2 sin2 θ
2

cosθ
+

8

3
|α|2(αe2iφ + α∗e−2iφ) = 0. (16)

The solutions to these equations are tan2 θ
2 = 0.853 andr = −0.25 tan2 θ

2 = −0.21 for alln.
With these values the interaction energy becomes

〈H̃ 〉 = −1.6425.10−3J‖ − 0.2662J⊥. (17)

It should be noted that if the isotropic Heisenberg Hamiltonian is considered, i.e.J‖ = J⊥ = J ,
then one obtainsH = − 1

2J (S
2− 3

2), which is invariant under any unitary transformation. This
does not mean that it is not possible to squeeze spins for the isotropic Heisenberg Hamiltonian:
a modified unitary operator can be introduced in place of equation (4) and then it is more
convenient to define the generalized CS as a direct product of the CSS taken in each lattice site,
as will be discussed in section 4. Therefore we assume that the Hamiltonian in equation (12)
shows an easy-axis anisotropy, that isJ‖ > J⊥. Then it is easily diagonalized and gives− 1

4J‖
and( 1

4J‖ − 1
2J⊥): here the first term is the ground-state energy and doubly degenerate. This

can also be seen from equation (14) by takingθ andα to be zero. On the other hand, if the
expectation value of H between the CS is minimized with respect toθ , one obtainsθ = π

2 ,
for which the CS energy becomes− 1

4J⊥—and it is exact. This is not surprising, since the
spin S pointing along thez-axis rotates through an angleθ about the axisi sinφ − j cosφ
[15]. This is further twisted by the squeezing transformation, which can be clearly seen in
the quasiprobability distributions on the sphere forS [4]. When compared with the result of
the CSS, the energy appears to be reduced in the squeezed states. This justifies the general
result that the squeezing effects cause more stable ground states. Contrary to the result of the
CSS, equation (17) contains a small contribution from the componentJ‖ of the Heisenberg
interaction. This is a result of the angleθ now having a minimum value of 0.47π after the
squeezing transformation. The result in equation (17) is obviously larger than the exact value,
but how close it is depends on the magnitudes ofJ‖ andJ⊥.
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4. Conclusions

In this paper we have constructed SSS through canonical transformation analogous to the
squeezed states for boson systems. Although this approach is no easier to use than others
[4, 10], it has the advantage of being extended easily to two-mode squeezing as in the case
of boson systems. It should be pointed out that one needs at least two spins to construct the
SSS, which in fact includes the quantum mechanical correlation among these spins, while it
is possible to produce the CSS from a single spin as clearly explained in [4]. Also in the same
reference, the optimally squeezed states are obtained by changing the totalS-spin, which gives
the minimum variance forS = 20. In our case, we have considered the minimum number
of elementary spins (two), and chosen coherent and squeezed parametersθ, φ, β and r as
variables, so that the optimal values of variances are searched for the place where one variance
is reduced and equation (1) is satisfied at the same time.

In section 3 we applied this method to the spin system interacting via the anisotropic
Heisenberg Hamiltonian. Here we have consideredθ, φ, β and r as trial parameters and
calculated the ground-state energy by a variational method. The result shows that the squeezing
effect indeed gives more a stable state than the CSS. The expansion in equation (5) is in powers
of α and thenth term is proportional toα

n

n! . Sinceα is generally smaller than unity (exactly
α ∼= 0.2), it seems sufficient to consider a limited number of terms in the calculation. It should
be noted that canonicality is obviously lost when the series in equation (5) are truncated, which
is a drawback of this approach.

The approach of this work has been chosen to connect with the existing literature. It can
be easily modified for a problem involving spin interaction. For example, for an interacting
spin system in a lattice the squeezing transformation can be taken as

U = exp
∑
j,δ

[αjS
+
j S

+
j+δ − α∗j S−j S−j+δ] (18)

whereS+
j andS−j are the raising and lowering operators for each site, respectively andδ = ±1

for nearest-neighbour interactions. This form is analogous to the two-mode squeezing of boson
systems, which includes the correlation between the modes. In that case, it is also convenient
to choose the CS in the following product form⊗

j

(
cos

θj

2
| ↑〉j + eiφj sin

θj

2
| ↓〉j

)
. (19)

Although this definition is more general than equation (2), it requires the handling of more
variational parameters, which can be achieved on a finite system.
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